Augmenting the antifungal activity of an oxidizing agent with kojic Acid: control of penicillium strains infecting crops.
نویسندگان
چکیده
Oxidative treatment is one of the strategies for preventing Penicillium contamination in crops/foods. The antifungal efficacy of hydrogen peroxide (H2O2; oxidant) was investigated in Penicillium strains by using kojic acid (KA) as a chemosensitizing agent, which can enhance the susceptibility of pathogens to antifungal agents. Co-application of KA with H2O2 (chemosensitization) resulted in the enhancement of antifungal activity of either compound, when compared to the independent application of each agent alone. Of note, heat enhanced the activity of H2O2 to a greater extent during chemosensitization, whereby the minimum inhibitory or minimum fungicidal concentrations of H2O2 was decreased up to 4 or 13 fold, respectively, at 35-45 °C (heat), when compared to that at 28 °C (normal growth temperature). However, heat didn't increase the antifungal activity of KA, indicating specificity exists between heat and types of antifungals applied. The effect of chemosensitization was also strain-specific, where P. expansum (both parental and fludioxonil-resistant mutants) or P. italicum 983 exhibited relatively higher susceptibility to the chemosensitization, comparing to other Penicillium strains tested. Collectively, chemosensitization can serve as a potent antifungal strategy to lower effective dosages of toxic antifungal substances, such as H2O2. This can lead to coincidental lowering of environmental and health risks.
منابع مشابه
Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid.
Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentration...
متن کاملKojic acid-derived tyrosinase inhibitors: synthesis and bioactivity
Tyrosinase is a key enzyme for melanin biosynthesis, catalyzing the oxidation of L-tyrosine to L-dopaquinone. The tyrosinase inhibition is an effective approach to control hyperpigmentation in human skin and enzymatic browning in fruits and vegetables. Kojic acid is a naturally-occurring tyrosinase inhibitor which has been clinically used to treat the hyperpigmentation of skin. However, kojic a...
متن کاملAntifungal activity of nano-composite films based on Poly Lactic Acid
Objective(s): Nanocomposite active packaging systems were used to prepare antimicrobial and antifungal properties. This study was to investigate the physical and antimicrobial activity of prepared films against three types of aflatoxin producing fungi Aspergillus Flavus. Material and methods: For investigating the effect of antibacterial nano-covers, the direct contact of 0, 1%, 3% and 5%...
متن کاملAntifungal activity of phenyllactic acid against molds isolated from bakery products.
Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less ...
متن کاملIn vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme
Objective(s): Tyrosinase is a key enzyme in pigment synthesis. Overproduction of melanin in parts of the skin results in hyperpigmentation diseases. This enzyme is also responsible for the enzymatic browning in fruits and vegetables. Thus, its inhibitors are of great importance in the medical, cosmetic and agricultural fields. Materials and Methods: A series of twelve kojic acid derivatives wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2014